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The instability of Fornberg’s pattern for leapfrog time integration
of the nonlinear convective equation au/at + wiau/ax = 0 is found
to occur as a closed three-mode process and to include the side-
band instability. The perturbation about Fornberg's pattern is able
to be unstable for both physical and computational modes. The
growth rates as well as the excitation mode spectra of the perturba-
tion are shown to agree with experimental results.  © 1995 Academic
Press, inc.

1. INTRODUCTION

The leaplrog scheme used extensively for time integration
of partial differential equations has both advantages and draw-
backs. Its main advantage is that the scheme is free from dissipa-
tion errors. This nondissipative nature of the leapfrog scheme,
however, entails the unfavorable feature that it often suffers
irom numerical instabilities. For a long-time integration of non-
dissipative equations such as the Korteweg—~de Vries equation,
it is of practical importance to suppress the instabilities without
causing damage to the nondissipative nature. Although the nu-
merical instabilities arising in the feapfrog scheme have been
studied from several viewpoints | 1=-7], few cases are known
where the growth mechanisms are clarified by cleanly separat-
ing the physical and computational modes of the leapfrog solu-
tions. A better understanding of the mechanism of the instabili-
ties is important when we control the instabilities and get an
insight for developing new schemes which are both nendissipa-
tive and stable.

In the previous papers, we showed (hat the leapdrog instability
came from the computational mode instability for time integra-
tion of the Korteweg—de Vries equation [8, 9] and the van der
Pol equation | 10], The computational mode was parametrically
excited through nonlincar interactions with the physical mode.
It should be noted that the leapfrog solutions in the nonlinear
case are also given by the sum of the physical and computational
modes as in the linear case. The computational mode has a
distinct character of changing-sign at each time step. By making
use of this character, we can numerically extract the physical
and computational modes from the solutions. The unstable leap-
frog solutions, which are due to the computational mode insta-
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bility, can be readily suppressed by eliminating the computa-
tional mode from the solutions |9, 10].

In this paper we consider the unstable behavior of Fornberg’s
pattern for leapfrog time integration of the nonlinear convective
equation [1]. We limit our discussion only to the case of 8 =
% (the parameter @ was introduced by Fornberg and will be
explained tater). The leapfrog instability arising in this particu-
lar case has been treated by Briggs ef al. [4] and briefly by Sanz-
Serna |7]. Briggs ot al. analyzed the exact leapfrog solutions
composed of one, two, three, and four Fourier high-harmonic
modes which are able to become nonlinearly unstable. Sanz-
Serna discussed the unstable behavior of the two-mode solu-
tions based on the so-called angmented system. According to
Briggs et al. and also to Fornberg, 8 = £ is a stability condition
for the one-mode solution (i.e., Fornberg's pattern). However,
the nuimerical experiments show that this condition is not
enough to suppress the unstable behavior of Fornberg's pattern.
For perturbational treatment of the leapfrog instability, it is of
key importance (o tuke into account the computational mode
as well as the physical mode. We show that a small perturbation
about Fornberg's pattern becomes unstable for both physical
and computational modes through nonlinear interactions with
the stationary fundamental mode and the perturbation itself.
This instability basically occurs as the closed three-mode pro-
cess discussed by Briggs et al. [4], and includes the side-band
instability introduced by Sloan et al. [5]. Since, in our case, one
of the three modes is stationary, the problem mainty becomes a
linear one. This enables us to calculate the growth rate of the
unstable mode dependent upon its mode number. The theoreti-
cal growth rates for both physical and computational modes of
the perturbation, as well as their excitation spectra, are shown
to agree well with experimental results.

The outline of this paper is as follows. In Section 2 we
make a numerical demonstration of the leapfrog instability for
Fornberg’s pattern. The leapfrog solutions are traced separately
for the physical and computational modes. To explain the nu-
merical results, in Section 3 we derive the evolution equations
for the physical and computational modes of the perturbation
about Fornberg’s pattern. Section 4 is devoted to an analysis
of the unstable solutions for the perturbation. Finally, conclu-
sions are given in Section 5.
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2. NUMERICAL RESULTS OF THE INSTABILITY

We consider 1-periodic in space solutions of nonlinear con-
vective equation,
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Equation (1) can be rewritten as

du 0o du
22 -t 2
ar 2 ox ( 2 ”ax 0 @)

using the parameter § of an arbitrary value [1]. The leapfrog
discretization of Eq. (2) gives

= At n
H;H = U l— E [QMFH + 2(1 - B)Hf + Bujil](uj’-‘ﬂ - Hj-]),
3)
where At is the time increment, n is the time step, Ax is the

grid spacing, and j is the grid number.
Equation (3) has a closed one-mode solution [4] of the form

H_? — a(n) er‘(2m‘31i + a*(n)e—iﬂm'ili, (4)
where { = V-1 and the asterisk denotes complex conjugate,
and a(n) is given by the difference relation

V3Ar
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We thus have a particular solution for #} in Eq. (3) which is
nonlinearly unstable when 6 = 2.

To avoid this particular instability we usuaily take @ = 3,
which also assures the conservation relation

> w* u = const. (5)
J
When # = %, Eq. (3) becomes
ntl — a-1 AI n 2 n n i
W= m(ujﬂ +uit+ “j—l)(ujﬂ - uj—l)- (6)

It is obvious from the above discussion that Eq. (6) has a
stationary solution for «] in Eq. (4},

aln + 1y =a(pn — 1) = a = const.

If we set a = ie/V'3, the stationary solution is reduced to
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The constant  represents the amplitude of #?. The sequence
uforj =0,1,2, .., gives the following Fornberg’s pattern [1]:

{ur} =0, —¢,£0, —£¢0,...

If we take Fornberg’s pattern as the initial values of Eg. (6),
we expect that Eq. (6) wil generate a stationary solution whose
pattern remains unchanged in the course of time.

We made numerical integrations based on Eq. (6) with peri-
odic boundary conditions, starting with Fornberg’s pattern as
the initial values. To control the initial background noise, we
added a uniform random noise {r;} of order 107" to Fornberg’s
pattern, The computations were made with double precision
(15 significant digits), fixing the parameters as Ax = 1/(2.J),
2J = 120, and At = 0.002 (At/Ax = 0.24), where 2J is the
total number of grid points. The missing starting values were
calculated using the Runge—Kutta scheme. Figure 1a shows that
Fornberg’s pattern which is marked with round dots remains
unchanged up to about the time step n = 3200 for ¢ = (0.1.
When the time step exceeds about # = 3200, however, the
initial pattern begins to suffer a gradual change due to the
leapfrog instability as shown in Fig. 1b. If we continue the
computation, it blows up at about n = 3700 (¢ == 7.4). Figure
2 shows the temporal change of the invariant of Eq. (1),

Co= [} e e = Ax Y . @)
i

The invariant C; exhibits an exponential growth for the time
steps exceeding about n = 3400 (¢ = 6.8). The conservation
relation of Eq. (5) holds with remarkable accuracy during
the computation.

Now let us decompose the leaptrog solution u of Eq. (6)
into the physical and computational modes,

2z

H 277' n n
W= = esin(S) = U+ (-1 9)

The perturbations of the physical mode v} and the computational
mode w} about Fornberg’s pattern can be experimentally ob-
tained from the leapfrog solutions 7 and &7 ' by the aid of the
Runge—Kutta integration of the differential version of Eq.
(6) [8-101,

dy |

dr m(“jﬂ + o o)W — )

We integrate the above differential equation in the interval of
one time step A¢ by the Runge-Kutta scheme taking uf ' as
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FIG. 1.
0.24), and e = (1.1,

the initial values at + = (n — 1)Af to obtain «; (+ = rA#). Then
v and w} are obtained from the relations

1 2 |, (2w
vr = E[M; + u(t = nAn] + 7§sm (?1),

W = (=173 = e = nao)].

We thus obtain C,, and C;, defined by

Cp= M0, Cu= [Ax Wi,
i I

corresponding to C, in Fig. 2. The resulting C,, and C,, are
shown as functions of time in Fig. 3. It is seen that C,. grows
exponentially with the almost constant growth rate v = 3.9,
until it blows up. By contrast, (), first exhibits an oscillatory
exponential growth with the growth rate 1.9, and after the time
step about 3000 {r = 6) it quickly grows with the growth rate
8.1 without oscillation. These values of growth rates are nearly

C
10t

FI1G. 2. TInvariant C, for Figs. 1 as a function of time. €, is defined by
Eqg. (8). The computation blows up at f = 7.4.
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Numerical solutions of « at (a} n = 3200; (b} n = 3460 based on Eq. (17) starting with Fornberg’s pattern. Ax = 35, Ar = 0.002 (Av/Ax =

equal to those of /2 = 1.95 and 2y = 7.8, respectively. The
period of oscillation is found to be 1.8 (900 time steps).

It is interesting to note that if we change the value of ¢ from
positive {& = 0.1) to negative (g = —0.1), the behavior of C,,
and C,, is interchanged as shown in Fig. 4. In this case C,,
exhibits the exponential growth with the almost constant growth
rate (==y), while C,, exhibits the oscillatory change with the
growth rate about y/2. The quick growth in the final stage of
(5, is not observed in this case, and on the contrary the growth
there is seen to be suppressed. However, the computation blows
up at the time step about n = 8300 (r = 17).

3. EVOLUTION EQUATIONS FOR THE PERTURBATION
For the leapfrog scheme
= ut + 2AF(uY),

the solution can be expressed by the sum of the physical and
computational modes: u* = ¥v* + (—1)"w". The evolution equa-
tions for both modes are given by

dv 1
E—E[F(v—w) + F(v + w)],

(10)

FIG. 3. C,, and C,, as functions of time correspending to C; in Fig. 2.
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3 A 6 ¢
FiG, 4. Cy, and C,. as functions of time for & = —0.1, In this case the
computation blows up at the time 7 == 17.
dw 1
—=—[F(v — w) — F(v + w}], 11
3 [F( ) — F( )| (11)

respectively [10]. In our case of the leapfrog scheme Eq. (6),
the function F(u) can be written as

Filu) = — —— () + 1 + ) — u2).

R
 6Ax

When 4} is decomposed into vf and w} as expressed by Eq.
(9), straightforward calculations of Eqs. (10) and (11) give

dv; 217
I 6 aas Om + o T um[Ze cost =5 | = (Wi — U]
- m (W;+| +w; Wj—l)(Wjﬂ - Wj—l), (12)
dw; 1 27
—cﬁ = T Al (Wj+l +w; + w26 CO"( 3 ) Ve — 01

(U;Jrl + U} + Uj 1)( - wj—l)' (13)

6A
At an earlier time stage |vf| and |w!| are considerably small

compared to &, so that Eqgs. (12) and (13) are expressed approxi-
mately as

dv; 2,

= 3A —— (U T U; F U ) cOos 31 ) (14}
dw; ) 21,

- = m(wj.H + w; + w ) cos (?j), (15)

Equations (14) and (15) indicate that for earlier times v} and
w! evolve linearly independent of each other and that if the
sign of e is changed the temporal behavior of v} and wf is
interchanged. The experimental evidence of the latter character
is confirmed by Figs. 3 and 4.
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Now let us consider the case where the solutions of Eqgs.
{14) and (15) become unstable. Equation (15) is different from
(14) only in the sign of &, Therefore the instability occurring
in Eq. (15) can be predicted from the solution of Eq. (14) by
changing the sign of . Focusing now on Eq. (14), it is obvious
that it does not have the unstable one-mode solution of the
form v, o ¢ considered by Briggs er al. [4], because for
this mode it is always true that

vy T v, o =0

Equation (14) contains one stationary mode of £”%? in the
cosine function which stems from the spatial derivative of the
initial Fornberg’s pattern. The three-mode solution composed
of a superposition of the ¢??, ¢™? and ™ modes gives the
simplest closed solution of Eq. (14) [4]. When a mode such as
e ™+ jg stimulated, where & = mu/J with u being an integer
£5], the modes which can be generated through interaction with
the Fornberg mode ¢™* are only e and ¢*" %, Thus, in
view of Eq. (9) we can write the solution of Eq. (14) in the form
Ui (1) = E(De™N 4 (nei™HA + eV +ce, (16)
where cc denotes complex conjugate terms. We note that the
parameter & is variable in the range of 0 = § = 7/3. As &
varies in this range, the amplitudes ¢ 7, and { cover spectra
inthe range of 0 ~ a/3, 7/3 ~ 27/3, and 27/3 ~ 7, respectively.
We also note that n and { represent the amplitudes of the side-
band of the Fomberg’s mode 277,
Substitution of Eq. (16) into Eq. (14) gives simultaneous
differential equations for the amplitudes £, n, and £,

f_ Kot + KoL, (7
L (18)
dt

L ge+ Ko, (19)

dr
where
-_£ Vs
K, 6Ax(i +cosd 3 sin 6),
K» = ——(1+cos 6+ V3sin 8),
6Ax

>
K,i=——(1-12 .
5 6Ax( cos &)

Equations (17)—(19) describe the temporal behavior of the am-
plitudes of the three modes which interact with each other
through the stationary ¢ mode. It should be noted that since
the " mode is stationary the modes interact linearly. This
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enables us to compose an arbitrary solution of v} in Eq. (16)
by superposing the solutions with different & of £ 7, and £ in
Eqs. (17)-(19).

4, UNSTABLE EXCITATION OF THE PERTURBATION

If we assume the solutions are of the form e* in Egs. (17)—
(19), A can be obtained from the characteristic equation

[A* + acos S = 20)
where the function « of z is defined by
1"
=" — + .
ale) = [ (2 — 1) (2 1)} (21)

The three roots for A are readily calculated from Eq. (20):

For the physical mode v?, the sign of « is positive (g > 0), so
that the complex roots A; and A; give the unstable oscillatory
solutions. The growth rate and the oscillation period are given
by @/2 and 47V 3a, respectively; both depend on the side-
band parameter . Maximum « is obtained from Eq. (21) as
Qo = &f3Axatz = 1 or § = 0. In our case of ¢ = 0.1 and
Ax = g

while for the computational mode w7, the sign of «¢ is considered
to be negative (corresponding to & << 0), so that the only real
root A, gives the unstable solution. The maximum growth rate
i$ oty = 4. These results are in good agreement with the
experimental results shown in Fig. 3.

One might be suspicious of setting § = 0, at which « takes
its maximum value in Eq. (21). When § = 0 the independence
between the amplitudes £ and 7 disappears and ¢ is no longer
complex in Eq. (16). To examine the case of § = () we revise
Eq. (16} as

U,-(t) = E(I)e“””)f + f* (I)e*(im‘fﬂj 4 {(I)ejnj!
where ¢ is real. Then we obtain the amplitude equations

dg_ | 5 _
o= 5 e)QE - 0,
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FIG. 5. Plots of g(k) exp[y(k}] for t = 0, 2, 4, and 6 as functions of the
mode number &; g(k) = 107" y(k) is the growth rate of the computational mode.

4 _
- = a(E+£9),

and the corresponding characteristic equation
A+ ) =0

Thus we find that Eq. (20) is valid for the case of § = 0.

If we denote the growth rate of the computational mode
dependent upon the mode number £ by (), the amplitudes of
the excited spectrum will develop temporally as o« exp[y(k){].
For the physical mode they will develop as o exp[hy(k)r].
Figure 5 gives the plots of g(k) exp[v(kxIfort =0, 2, 4, and
6, where the initial spectrum g(k) is taken as g(k) = 107,
corresponding to the experimental results shown later. The
growth rate y(k) has been calculated from «(2) in Eq. (21) for
e = 0.1 and Ax = 5

a(1/3 — k/1y (0 < k=< J/3),
y(K) = a(cosd), 8=1 mk/d — 1U3) (N3 =<k=2J/3),
QI3 =k=D.

7l — k/J)

We obtained the Fourier mode spectra for both physical and
computational modes experimentally from the discrete Fourier
transform of v} and wy:

() =35 () o)
Wi’ 2Jj=0 i J ’

The resulting spectra [W}| at the time t = 0, 2, 4, and 6 are
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FIG. 6. Spectra of the computational mode |Wj] corresponding to Fig. 5.

shown in Fig. 6, corresponding to the theoretical curves in Fig.
5. The figures correspond to C,, in Fig. 3. The spectrum at
t = 0 is the background noise {(~107'*) generated when the
missing starting values are calculated by the Runge—Kutta
scheme. Comparison of these figures shows a good agreement
of the gross excitation pattern in which the modes about ¥ =
20 and 60 are predominant. Also, centering about them, there
is growth which increases with time. A slight difference in the
magnitude of the modes about & = 60 is observed. The mode
at £ = 60 is found not to be excited. The cause of these
discrepancies is not well known, but it seems to be due to our
linear analysis based on Egs. (14) and (15).

Figure 7 shows the spectra [Vi] corresponding to [Wj| in Fig.
6. The dotted lines are plots of g,(k} exp[3y(k)t], where the
initial spectrum is taken as g(k) = 0.8 X 107" The spectrum
Vil at + = 0 is composed of the spontaneous background noise
plus the uniform random noise {r,} of order 10~". The sequence
{r} can be altered by changing the initial seed for the pseudoran-
dom number generator. The spectra at ¢t = 2 and 4 correspond

Ve k
10 20 30 40 50 60

FIG. 7. Spectra of the physical mode |V}| corresponding to |Wy] in Figs.
6. The dotted lines are plots of g,(k) exp[y(kx] for ¢t = 0, 2, 4, and 6;
gy =08 x 10™,
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o the oscillatory change (with the growth rate of about y/2)
of C,, in Fig. 3. In contrast to [W?], at the stage of t = 6 new
modes about & = 40 and 3 are quickly excited, in addition to
the old modes about £ = 20 and 60. This stage corresponds to
the exponential growth with the growth rate of about 2y in G,
shown in Fig. 3. These new modes are identified as the modes
tesulting from the product between the computational modes,
This process is due to the last quadratic term of the computa-
tional modes on the right-hand side of Eg. (12). When the
computational mede of the mode number & with the growth
rate y is multiplied by itself, it is converted to the physical
mode of the mode number 2k with the growth rate 2vy. If 2k
exceeds the maximum mode number J, the mode appears at
|2k — 27| as aliasing errors. For confirmation of this process
we eliminated the computational modes from the solution of
Eq. (6) by applying the Runge—Kutta smoother [9] and we
found that the new physical modes were not excited. Except
for this purely nonlinear process the theoretical predictions for
|Vi| agree well with the experimental results, We found that
the above-mentioned characteristics for |W§| and {V] did not
depend on the initial choice of the random sequence {r} which
was of order 107",

5. CONCLUSIONS

In the present paper we have considered the unstable behavior
of Fornberg’s pattern under numerical integration using the
leapfrog scheme Eq. (6). We have decomposed the solutions
of Eq. (6) into the physical and computational modes and traced
the temporal changes of the perturbation about Fornberg’s pat-
tern. To analyze the experimental results we derived the evolu-
tton equations for both physical and computational modes and
discussed the unstable behavior of the perturbation about Forn-
berg’s pattern. Thereby we have shown:

1. the perturbation about Fornberg’s pattern is unstable for
both physical and computational modes.

2. the instability occurs as the closed three-mode process
and includes the side-band instability.

As we mentioned in the first section, the leapfrog instability
can be suppressed by eliminating the computational mode if
the instability is only due to the computational mode instability.
The case studied in this paper shows that the physical mode
can also be unstable, independent of the computational mode
instability. In this case we cannot use the Runge—Kutta
smoother to supppress the instability. To note this fact is im-
portant, although the case being considered may seem to be
quite special. We ate now examining the role of Fornberg’s
pattern contained in the spontaneous background noise.
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